快捷搜索:

万博manbetx:目标检测与行为跟踪 智能分析三大应用

  传统视频监控系统只提供视频的捕获、保存、传输、显示画面等功能,而视频内容的分析识别等需要人工实现,工作量巨大且容易出错。智能监控系统是指在特定的监控区域内实时监控场景内的永久或是临时的物体,通过对视频传感器获取的信息进行智能分析来实现自动的场景理解、预测被观察目标的行为以及交互性行为。本文就视频智能分析技术的原理和现状进行介绍。

  在传统视频监控系统中,视频内容的分析识别等需要人工实现,由于劳动强度高,工作量巨大且容易出错,因此视频监控系统正朝着智能化的方向发展。新一代的智能化监控系统采用了智能视频分析技术,克服了传统监控系统人眼识别的缺陷,具备实时对监控范围内的运动目标进行检测跟踪的功能;并且把行为识别等技术引入到监控系统中,形成新的能够完全替代人为监控的智能型监控系统。

  智能视频分析技术涉及到模式识别、机器视觉、人工智能、网络通信以及海量数据管理等技术。视频智能分析通常可以分为几部分:运动目标的识别、目标跟踪与行为理解。

  一般情况下,视频智能化分析的基本过程是从给定的视频中读取每帧图像,并对输入图像进行预处理,如滤波、灰度转换等,然后判断输入图像中是否有运动目标,接下来判断运动目标是否为监控目标,最后对该目标根据需求进行监控、跟踪或是行为理解等分析。

  运动检测(MotionDetection)。运动检测是把视频中变化的区域与背景图像精确分离出来,即正确分割出运动目标区域或轮廓,这是任何系统设计实现首先要考虑的问题,它的效果好坏或成败与否直接影响后续的跟踪和行为理解等后期处理效果。

  目标检测是从图像序列中将变化区域从背景图像中提取出来,从而检测出运动的目标,目标检测十分重要,它将影响目标对象的分类、行为识别等后期处理。目标检测分析多个差图像中区域之间的关系,并在原图像中验证,得到运动的目标和其运动轨迹。比如,如果已经知道3个不同时刻的二值差图像,若存在一个运动目标的线个差图像中的大小基本不变,其运动方向和运动速度基本不变,在3个差图像对应的原图像中的区域,有基本相同的灰度分布等等。几种常用的动态视频目标检测方法简介如下:

  背景减除,背景减除(BackgroundSubtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。

  时间差分,时间差分(TemporalDifference又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。

  但在目标运动缓慢时,万博manbetx:差分后的运动目标区域内会产生空洞,从而不能完全提取出所有相关的特征像素点,一般不能够完整地分割运动对像,不利于进行相关分析,因此差分法很少被单独使用。

  光流,基于光流方法(OpticalFlow)的运动检测采用了运动目标随时间变化的光流特性,万博manbetx官网如Meyer等通过计算位移向量光流场来初始化基于轮廓的跟踪算法,从而有效地提取和跟踪运动目标。该方法的优点是在所摄场所运动存在的前提下也能检测出独立的运动目标。然而大多数的光流计算方法相当复杂,且抗噪性能差,如果没有特别的硬件装置则不能被应用于全帧视频流的实时处理。

您可能还会对下面的文章感兴趣: